
PRACTALL consensus report
Precision medicine in patients with allergic
diseases: Airway diseases and atopic
dermatitis—PRACTALL document of the
European Academy of Allergy and Clinical
Immunology and the American Academy
of Allergy, Asthma & Immunology
Antonella Muraro, MD,a Robert F. Lemanske, Jr, MD,b PeterW. Hellings, MD,c Cezmi A. Akdis, MD,d Thomas Bieber, MD,e

Thomas B. Casale, MD,f Marek Jutel, MD,g Peck Y. Ong, MD,h Lars K. Poulsen, PhD,i Peter Schmid-Grendelmeier, MD,j

Hans-Uwe Simon, MD,k Sven F. Seys, PhD,l and Ioana Agache, MDm Padua, Italy, Madison, Wis, Leuven, Belgium, Davos

and Bern, Switzerland, Bonn, Germany, Tampa, Fla, Wroclaw, Poland, Los Angeles, Calif, Copenhagen, Denmark, and Brasov, Romania
In this consensus document we summarize the current
knowledge on major asthma, rhinitis, and atopic dermatitis
endotypes under the auspices of the PRACTALL collaboration
platform. PRACTALL is an initiative of the European Academy
of Allergy and Clinical Immunology and the American
Academy of Allergy, Asthma & Immunology aiming to
harmonize the European and American approaches to best
allergy practice and science. Precision medicine is of broad
relevance for the management of asthma, rhinitis, and atopic
dermatitis in the context of a better selection of treatment
responders, risk prediction, and design of disease-modifying
strategies. Progress has been made in profiling the type 2
immune response-driven asthma. The endotype driven
approach for non-type 2 immune response asthma, rhinitis, and
atopic dermatitis is lagging behind. Validation and qualification
of biomarkers are needed to facilitate their translation into
pathway-specific diagnostic tests. Wide consensus between
academia, governmental regulators, and industry for further
From aFood Allergy Referral Centre Veneto Region, Department of Women and Child

Health, Padua General University Hospital, Padua; bthe Department of Pediatrics, Uni-

versity ofWisconsin School ofMedicine and Public Health,Madison; cthe Department

of Otorhinolaryngology, University Hospitals Leuven; dthe Swiss Institute of Allergy

and Asthma Research, University of Zurich, Christine K€uhne-Center for Allergy

Research and Education, Davos; ethe Department of Dermatology and Allergy, Chris-

tine K€uhne-Center for Allergy Research and Education, Friedrich-Wilhelms-Univer-

sity, Bonn; fthe Department of Internal Medicine, University of South Florida,

Tampa; gthe Department of Clinical Immunology, Wroc1aw Medical University, and

ALL-MED Medical Research Institute, Wroclaw; hthe Division of Clinical Immu-

nology and Allergy, Children’s Hospital Los Angeles, and the Department of Pediat-

rics, Keck School of Medicine, University of Southern California, Los Angeles;
iAllergy Clinic Copenhagen University Hospital at Gentofte, Copenhagen; jthe Al-

lergy Unit, Department for Dermatology, University of Zurich, Zurich, Switzerland,

Christine K€uhne-Center for Allergy Research and Education, Davos; kthe Institute

of Pharmacology, University of Bern; lthe Laboratory of Clinical Immunology, Uni-

versity of Leuven; and mthe Department of Allergy and Clinical Immunology, Transyl-

vania University, Brasov.

Disclosure of potential conflict of interest: C. A. Akdis serves as a consultant from

Actellion, Aventis, Stallergenes, Allergopharma, Circacia; and receives research

support from Novartis, The European Commission, Swiss National Science Founda-

tion, and Christine K€uhne-Center for Allergy Research. T. Bieber is a member of the

board of Astellas, Novartis, L’Or�eal, Sanofi, Regeneron, Bioderma, Pfizer, Galderma,

and Chugai and serves as a consultant for Astellas, Novartis, L’Or�eal, Sanofi,
development and application of precision medicine in
management of allergic diseases is of utmost importance.
Improved knowledge of disease pathogenesis together with
defining validated and qualified biomarkers are key
approaches to precision medicine. (J Allergy Clin Immunol
2016;137:1347-58.)
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Since the beginning of medicine, patients with similar clinical
characteristics, presently termed phenotypes, have been grouped
and treated similarly according to the experience of the clinician
and, subsequently, evidence-based medicine. However, many
patients might not respond to therapy that is considered the
standard of care, reinforcing the concept that ‘‘one size does not fit
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Abbreviations used
AD: A
topic dermatitis
AR: A
llergic rhinitis
CRTH2: C
hemoattractant receptor-homologous molecule expressed

on TH2 cells
FENO: F
raction of exhaled nitric oxide
NO: N
itric oxide
TSLP: T
hymic stromal lymphopoietin
all’’ and encouraging the scientific community to unravel the
pathophysiologic mechanisms causing the disease.
Currently, it is generally accepted that the clinical differences

in treatment responses or disease course over time are related to
underlying variations in genetic, pharmacologic, physiologic,
biologic, and/or immunologic mechanisms that produce sub-
classes of phenotypes termed endotypes.1 This endotype-driven
observed heterogeneity in therapeutic response has led to the
use of terms, such as precision or personalized medicine (among
others), to direct therapy more specifically, when possible. For
example, although the phenotype of anemia presents clinically
with pallor related to low red blood cell indices, the underlying
endotypes responsible for this phenotype are multiple (eg, iron
deficiency, G6PD deficiency, and autoimmune disease among
others). Thus, for anemia, defining the underlying endotype is
critical in more precisely choosing any therapeutic intervention.
To evaluate the latest findings in preciselydefining the endotypic

profile of the allergic and/or asthmatic patient and the potential for
the specialty of allergy/immunology to use this precisionmedicine
approach, the European Academy of Allergy and Clinical
Immunology and the American Academy of Allergy, Asthma &
Immunology have conducted a project focused on this topic. The
previously successful PRACTALL approach, in which a panel of
experts from these 2 geographic regions reviewed the literature and
harmonized the evidence that supported the particular topic being
analyzed, was used to conduct these analyses.2

The focus for this PRACTALL was an examination of the
potential benefits of applying the concepts of precision medicine
to first airway and skin allergic diseases. A second PRACTALL
paper soon to be published will cover the precision medicine
approach for food allergy and anaphylaxis. Although a number of
terms have been used to define this type of approach, the
consensus of the writing groups was to use the term precision
medicine. As such, according to the National Institutes of Health,
precision medicine is an emerging approach for disease treatment
and prevention that takes into account individual variability in
genes, environment, and lifestyle for each person.1
PRECISION MEDICINE AT THE LOWER AIRWAYS:

ASTHMA
Theheterogeneityof asthma in relation to patients’ characteristics

(phenotype), underlying pathogenic mechanisms (endotype), and
clinically significant outcomes, including response to treatment, has
been established beyond any doubt.3-6 Better asthma management
needs a refined understanding of disease heterogeneity and mecha-
nisms in relation to clinically significant outcomes.
Extended heterogeneous disease-related metabolic, inflamma-

tory, immunologic, and remodeling pathways have been
described, and a stable pattern is defined as a disease endotype.
A well-defined endotype should link the key pathogenic mech-
anism with a clinical phenotype of asthma through biomarkers.7,8

There are several benefits of endotyping in a clinical setting, such
as stringent consideration of entry criteria for epidemiologic,
genetic, or therapeutic trials.
Defining asthma endotypes
Generally, it is considered that a type 2 immune response

underlies atopic asthma.9 Eosinophilic airway inflammation and an
increase in type 2 cytokine levels (eg, induced sputum, bronchoal-
veolar lavage fluid, and bronchial biopsy specimens) are character-
istic of these patients.10-15 The type 2 immune response endotype
has been related to response to inhaled corticosteroids9,16 and dis-
ease outcomes, such as exacerbations.17,18

Several subendotypes can exist within the type 2 complex
endotype, such as the IL-5–high, IL-13–high, or IgE-high
endotypes.19 Aspirin-exacerbated respiratory disease is also a
particular subtype of the type 2 complex endotype, where the hy-
peractive metabolic pathway shapes the type 2 immune
response.20 In this view type 2 immune response endotypes are
defined by subgroups of patients who have a beneficial response
to treatment targeting the IL-5, IL-13, or IgE pathogenetic path-
ways (Fig 1, A). The type 2 complex endotype can also be identi-
fied in patients with allergic rhinitis (AR) as a fundament for the
united airways disease concept (Fig 1, B).
Both the innate and acquired immune responses contribute to

type 2 immune response endotypes (Fig 1, A). TH1/TH17 inflam-
matory cells21-25 and nonallergic mechanisms, such as environ-
mental factors, psychosocial stress, activation of metabolic
pathways,26-28 resident cells in the remodeled phenotype,29,30 or
epithelial barrier dysfunction,31 further modulate the profile of
type 2–driven inflammation. In addition, type 2–driven inflamma-
tion is characterized by a high cellular plasticity that enables the
cells to adapt to a specific inflammatory milieu. Innate immune
response cytokines, such as IL-33 and thymic stromal lympho-
poietin (TSLP), modulate the mast cell–driven phenotype,
whereas type 2 cytokines promote a particular phenotype
involving smooth muscle cells and epithelial and endothelial cells
in asthmatic patients. The latter also influence the permissiveness
of the epithelium for allergens and of the endothelium for the
recruitment of inflammatory cells to inflamed tissues and mucus
production.32-34

The mechanisms contributing to the non–type 2 immune
response in asthmatic patients are less clear (Fig 2). Two major
mechanisms leading to neutrophilic inflammation are postulated:
(1) the dysregulated innate immune response, including
neutrophil-intrinsic abnormalities, and (2) activation of the
IL-17–dependent pathway.15,16,35-39 In addition, type 1 immune
responses might contribute to asthma severity: high IFN-g levels
in sputum of asthmatic patients have been associated with severe
asthma.13,40 Several factors, such as metabolic or epigenetic
factors, or activation of the epithelial-mesenchymal trophic
unit have been identified as modulators. The endotyping of
non–type 2 immune response asthma lags behind that of type 2
immune response asthma, and until now, no endotype-driven
interventions have been proved effective.

Asthma biomarkers
Currently identified asthma biomarkers are used to

predict treatment response in patients with type 2 immune



FIG 1. A, Overview of the type 2 immune response in asthmatic patients. Three main phenotypes of type 2

immune response–driven asthma are described: eosinophilic inflammation; allergic sensitization, as

depicted by the presence of antigen-specific IgE; and airway hyperreactivity and remodeling. Both the

innate and acquired immune responses contribute to type 2 immune response endotypes.

Endotype-driven asthma management targets most of the molecular pathways involved in type 2 immune

response asthma: green, approved treatment targets for asthma; blue, under investigation; red, potential

treatment targets. B, Overview of the type 2 immune response in patients with rhinitis. Three main

phenotypes of rhinitis are described, which are similar to those of asthma, with the exception of

remodeling. Different cellular and molecular players contribute to type 2 immune responses in patients

with rhinitis. In contrast to asthma, none of these molecular pathways are under investigation for targeted

treatment. ILC, Innate lymphoid cell; NKT, natural killer T cell; PGD2, prostaglandin D2.
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FIG 2. Overview of non–type 2 immune response in asthmatic patients. Threemain phenotypes of non–type

2 immune response asthma can be described based on the inflammation pattern and the presence of airway

hyperreactivity and remodeling. Some of the described molecular pathways are under investigation (blue)

for an endotype-driven approach. Potential treatment targets are indicated in red. ILC, Innate lymphoid cell;

ROS, reactive oxygen species.
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response–driven inflammation (Table I). It should be noted that
most asthma biomarkers are currently used in research settings
and still need to be validated and qualified. A valid biomarker is
defined as ‘‘a biomarker that is measured in an analytical test
system with well-established performance characteristics and
for which there is an established scientific framework or body
of evidence that elucidates the physiologic, toxicologic, pharma-
cologic, or clinical significance of the test results.’’41 Validation is
the process of assessing the biomarker and its performance
characteristics and determining the range of conditions under
which the biomarker will produce reproducible and accurate
data. Qualification is the evidentiary process of linking a
biomarker with biological processes and clinical end points.42-44

Blood eosinophilia is a well-demonstrated biomarker of type 2
immune response–driven inflammation in asthmatic patients and
has been linked to response to corticosteroids and, more recently,
anti–IL-4/IL-13–targeted45 and anti–IL-5–targeted46,47 treat-
ment. Its correlation to sputum or bronchial eosinophilia cannot
always be demonstrated; thus blood and airway eosinophils
cannot be used interchangeably because they might reflect
different type 2 subendotypes. Sputum eosinophil levels have
also been useful for predicting response to inhaled steroids16

and anti–IL-13 and anti–IL-5 therapy.17,18,46-48

The periostin gene has been identified as an IL-13–inducible
gene in bronchial brushings from asthmatic patients.9,49 Periostin
expression in bronchial tissue has been shown to be a biomarker
of eosinophilic airway inflammation,50 whereas serum periostin
levels have been related to the response to anti–IL-13 therapy in
patients with mild-to-moderate asthma.51
Serum dipeptidyl peptidase 4 has also been shown to predict
responses to anti–IL-13 therapy.52 In another study sputum IL-
13 levels were used to identify responders to anti–IL-13
treatment.53

In a post hoc analysis a composite biomarker combining blood
eosinophils, periostin, and fraction of exhaled nitric oxide (FENO)
identified anti-IgE mAb omalizumab responders.54 Recent data
suggest that blood eosinophils alone might be a useful biomarker
to predict responses to omalizumab.55

Biomarkers measured in exhaled breath are of particular interest
because of their noninvasive character. In steroid-naive asthmatic
patients FENO values correlated well with eosinophilic airway
inflammation. Breath analysis by using eNose (volatile organic
compounds in exhaled breath) can identify asthmatic patients and
can be used to predict their response to steroids with greater accu-
racy than sputum eosinophil counts or FENO values.56,57

There are several biomarkers predicting poor steroid response
in asthmatic patients, such as p38 and MSK1 phosphorylation
status of blood monocytes, vanin-1 expression and CpG
methylation, the presence of TH2/TH17 double-producing cells
in bronchoalveolar lavage fluid, and airway expansion of specific
gram-negative bacteria. A corticosteroid-responsive endopheno-
type was recently described.58-63
Endotype-driven asthma treatment
Early clinical trials with anticytokine therapies in asthmatic

patients were not successful because of inclusion of unselected
patients. As an example, anti–IL-5 therapy in unselected patients



TABLE I. Asthma biomarkers guiding tailored treatment approaches

Biomarker Treatment expected to produce a response Associations Comments (point of care, variability/fluctuation)

Blood

Eosinophils Anti–IL-5

Anti-IgE

Anti–IL-4/IL-13

Corticosteroids

CRTH2 antagonists

Exacerbations

LF decrease

Fixed airway obstruction

Easily available

Significant fluctuation

Specific IgE Anti-IgE

AIT

Exacerbations

AHR (AIT)

Periostin

DPP-4

Anti–IL-13 LF decline

Exacerbations

Research type

Assay dependent

Induced sputum

Eosinophils Anti–IL-5

ICS

Exacerbations Research type

Significant fluctuation

IL-13 Anti–IL-13 Unknown Research type

Exhaled breath

FENO Anti–IL-5

Anti-IgE

Anti–IL-13

ICS

Exacerbations, LF decrease Easily available

Significant fluctuation

Metabolomics (VOC) ICS Unknown Research type

There is significant overlap between biomarkers used to predict response to different endotype-driven strategies. In addition, few biomarkers are easily available, most are subject

to significant fluctuation, and none are validated and qualified.

AIT, Allergen immunotherapy; DPP-4, dipeptidyl peptidase 4; ICS, inhaled corticosteroids; LF, lung function; VOC, volatile organic compounds.

TABLE II. Endotype-driven treatment in type 2 immune response–driven asthma

Predictive biomarker Drug Target Effects Regulatory status

Blood eosinophils

Periostin

FENO

Omalizumab IgE Reduces exacerbations

Improves symptoms and quality of life

FDA and EMA approved

Blood/sputum eosinophils

FENO

Mepolizumab IL-5 Reduces eosinophil counts, exacerbations, and OCS

Improves FEV1

FDA approved

EMA under consideration

Tested for CRSwNP

Blood eosinophils Reslizumab IL-5 Reduces eosinophil counts, exacerbations

Improves FEV1

FDA under consideration

Blood eosinophils Benralizumab IL-5Ra Reduces eosinophil and basophil counts, exacerbations

Improves FEV1

Phase III

Blood eosinophils Dupilumab IL-4Ra Reduces exacerbations

Improves FEV1

Improves symptoms and quality of life

Phase III

Tested for CRSwNP, AD, and EoE

Periostin

DPP-4

Tralokinumab IL-13 Reduces eosinophil counts and exacerbations

Improves FEV1

Phase II

Periostin Lebrikizumab IL-13 Reduces exacerbations

Improves FEV1

Phase III

The IgE, IL-5, and IL-4/IL-13 pathways can be targeted with mAbs. There is a remarkable overlap between the so-called predictive biomarkers and a significant heterogeneity in

clinical response.

CRSwNP, Chronic rhinosinusitis with nasal polyps; DPP-4, dipeptidyl peptidase 4; EMA, European Medicines Agency; EoE, eosinophilic esophagitis; FDA, US Food and Drug

Administration; IL-4Ra, IL-4 receptor a; IL-5Ra, IL-5 receptor a; OCS, oral corticosteroids.
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(lack of evaluation for blood or sputum eosinophilia) did not show
significant effects on asthma exacerbations or lung function
improvement.64,65 A recent tailored approach selecting patients
for anti–IL-5–targeted treatment based on their blood or sputum
eosinophil counts proved to be more rewarding (Table II).
Several steps need to be taken into account when considering

tailored therapy for asthmatic patients (Fig 3). Before assessment
of a patient’s phenotype and endotype, correct diagnosis of
asthma should be ensured. Comorbidities need to be evaluated
and treated properly. A crucial step is to unravel which pathophys-
iologic mechanism or mechanisms are driving the disease,
thereby determining the patient’s endotype. Translation of
biomarkers into pathway-specific diagnostic tests is essential
and should guide the design of future large clinical trials incorpo-
rating both longitudinal and mechanism-tailored end points.
Many targeted treatments are in various stages of clinical

development for patients with type 2 immune response–driven
inflammation: anti–IL-4/IL-13, anti-IL-4, anti–IL-5, and anti-IgE
antibodies, as well as CRTH2 antagonists (Fig 1 and Table II).66,67

At present, biomarkers are not sufficiently specific to select the
subendotype of type 2 immune response asthma specifically
responding to a targeted treatment (Table I). For example, blood
eosinophils predicted response to anti–IL-4/IL-13, anti–IL-5, and
anti-IgE antibodies, as well as CRTH2 antagonists, and the



FIG 3. Suggested approach to precision medicine in asthmatic patients.

First, the correct diagnosis of asthma should be verified, and comorbidities

should be treated properly. In a second step phenotype is established

based on visible properties. Further characterization of the patient’s

endotype is crucial to ensure the optimum response to treatment and risk

prediction, especially for those with severe and uncontrolled disease.

Validation of prognostic biomarkers related to disease severity and risk

prediction (including risk to develop asthma) open new pathways for

primary and secondary asthma prevention. AHR, Airway hyperresponsive-

ness; BM, biomarkers.
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clinician will face a conundrum of how best to treat patients with
severe asthma with high blood eosinophil counts.68

Limited data are available about the long-term efficacy of
targeted treatment in asthmatic patients. For example, sputum
eosinophil counts and exacerbation frequency increased as soon
as 3 months after stopping treatment with the anti–IL-5 mAb
mepolizumab.69 Current targeted asthma interventions do not
seem to influence the natural history of the disease or induce
long-term remission.
Another limitation of targeted treatment in asthmatic patients

is the interindividual and intraindividual variation in response, which
is called the dissociated effect.7 Thismight be due to the (epi)genetic
background, the predominant immune-inflammatory pathway, and
the contribution from remodeled tissue. Drug efficacy at the target
site adds to the observed variability in response.
In summary, recent therapeutic advances have unraveled some

of the contributions of phenotype and endotype to the pathogen-
esis of asthma and the responses to specific therapies. However,
more information is needed to better target specific pathways in
subjects that will optimize the patient’s therapeutic responses
while avoiding adverse effects.
PRECISION MEDICINE AT THE UPPER AIRWAYS:

RHINITIS
The current definition of rhinitis relies on the combination of

history, clinical examination, and allergy diagnostic testing,
which allows the distinction of 3 major subgroups: allergic,
infectious, and nonallergic noninfectious rhinitis.70,71

Rhinitis phenotypes were described in relation to the severity
and duration of symptoms, major presenting symptoms, sensiti-
zation pattern, presence of comorbidities, and level of control
after treatment. Rhinitis phenotypes have been the basis of
evidence-based treatment algorithms for rhinitis. A phenotype-
based strategy for rhinitis implies a trial-and-error approach, with
guidance of treatment based on the severity and duration of
symptoms. As a consequence, a significant percentage of patients
with AR have uncontrolled disease,72 highlighting the need for
precision medicine in patients with AR. Precision medicine im-
plicates endotype- rather than phenotype-driven treatment added
to the prediction of successful therapy, prevention of disease, and
participation of the patient.
The first step in the implementation of precision medicine in

patients with rhinitis will be to characterize the endotype as a
guide to a tailored therapeutic approach. It should be emphasized
that patients with rhinitis might have a complex endotype and that
the current understanding of cellular and molecular processes
giving rise to a certain phenotype require further study. In
addition, as described for asthma, there are several modulators
of endotype expression, such as the environment, microbiome,
lifestyle, and nasal anatomy.
The followingendotypesof rhinitis arebeingproposed (Fig4).73,74
Type 2 immune response rhinitis
Mast cell–bound specific IgE is cross-linked by absorbed

allergen molecules, leading to acute symptoms and influx into the
nasal mucosa of eosinophils, basophils, and Tand B lymphocytes.
This is often accompanied by a systemic immune response
dominated by type 2 cytokines produced by CD41 T cells,75

type 2 innate lymphoid cells, and basophils, which is associated
with blood and nasal eosinophilia. The type 2 immune response
endotype usually is attributed to AR76; however, occupational/
environmental low-molecular-weight substances leading to
release of epithelially derived TSLP, IL-33, and IL-25, can initiate
or aggravate a type 2 immune response.77,78
Type 1 immune response rhinitis
An innate and adaptive type 1/IL-17 immune response leads to

influx of neutrophils and IFN-g–producing CD41 T cells, usually
as the background of infectious rhinitis.79
Neurogenic rhinitis
This particular endotype is characterized by a relative over-

expression of transient receptor potential channels on trigeminal
nerves and high concentrations of substance P and neurokinins
and is linked to gustatory rhinitis, rhinitis of the elderly, and
idiopathic rhinitis with nasal hyperreactivity.80
Epithelial dysfunction
Epithelial dysfunction can be primary or secondary to type 2 or

type 1 immune response–induced inflammation. It can be divided
roughly into the ciliary dysfunctional pathway (primary vs second-
ary) and the barrier dysfunctional pathway, with reduced expression
of zonula occludens 1 and occludin-1 facilitating subepithelial
migration of exogenous immune-stimulating molecules.81

Several other rhinitis phenotypes, such as drug-related, senile,
and hormonal rhinitis, are poorly characterizedby the lack of dataon
biomarkers and the molecular and cellular mechanisms involved.
In clinical practice efforts can be made in endotyping patients

with rhinitis by measuring total and allergen-specific IgE levels



FIG 4. Overview of rhinitis phenotypes and endotypes. Similar to asthma, a type 2 immune response and

non–type 2 immune response endotype can be described for rhinitis. Neurogenic and epithelial barrier

dysfunction endotypes are particularly relevant for rhinitis. ILC, Innate lymphoid cell; IR, idiopathic rhinitis;

NHR, nasal hyperreactivity; NK, neurokinin; SP, substance P; TRP, transient receptor potential.
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and blood eosinophil, nasal eosinophil, and neutrophil counts.
Several other biomarkers are used in research settings, such as
serum IL-5, nasal total and allergen-specific IgE, eosinophil-
derived neurotoxin, eosinophil cationic protein, eosinophil
peroxidase, IL-5, substance P, neurokinin 1, IL-33, and TSLP
levels and staining of mucosal biopsy specimens for TRPV-1,
zonula occludens 1, or occludin.
These biomarkers should ideally be supplemented by nasal

function measurements, such as nasal flow measurement (to
confirm nasal obstruction) and cold dry air provocation (to
determine nasal hyperreactivity), nasal nitric oxide measurement
(to measure nasal inflammation), nasal allergen provocation (to
confirm the clinical relevance of allergens), and evaluation of smell
performance (in patients mentioning reduced smell capacity).
The best example of an endotype-driven treatment in rhinitis is

the use of allergen-specific immunotherapy in patients in whom
an allergen-induced type 2 immune response endotype leads to a
clinically relevant exposure-symptom relation.82,83 Another
example of endotype-driven treatment is the highly successful
intervention with capsaicin for the neurogenic endotype.80

Precision medicine represents the future of rhinitis care in
patients whose symptoms are not fully controlled despite
evidence-based treatment. Essential steps toward precision
medicine in patients with rhinitis are described in Table III.
PRECISION MEDICINE AT THE SKIN: ATOPIC

DERMATITIS
Atopic dermatitis (AD) is a disease with a highly complex

pathophysiology (Fig 5) and heterogeneous phenotypes, which
are illustrated by different features, such as age of disease onset,
variable response to allergens, spectrum of severity, potential of
IgE autoreactivity, and comorbidities (asthma, rhinitis, food
allergy, and infections).84

In the field of AD, in contrast to asthma, we are just in the
beginning of the development of precision medicine and the
attempt to reach a biomarker-based molecular taxonomy. We
expect that the complexity of the clinical phenotype is underlined
by even more complex profiles of possibly different
pathophysiologic pathways84-86 from which we can learn and
develop a strategy for discovery, validation, and qualification of
biomarkers.87

Precisionmedicine is of broad relevance for themanagement of
AD, which is known to have a diverse natural history ranging
from complete remission to relapsing flares to very severe and
persistent forms variably associated with comorbidities, such as
asthma and AR. Clearly, the discovery and validation of
biomarkers with ideally prognostic and predictive value for AD
represents a significant unmet need in this field.
The following endotypes of AD are being proposed (Fig 6 and

Table IV): (1) type 2 immune response AD, covering the whole
disease spectrum from background inflammation in nonlesional
skin to acute disease flares to chronic disease, peaking during
acute flares, and (2) non–type 2 immune response AD mixing
TH1-, TH17-, and TH22-driven inflammation and epithelial
dysfunction.84,86,88,89

In addition to the attempt to identify possible provocative
factors, the current approach in ADmanagement is still ‘‘one size
fits all’’ based on use of emollients and anti-inflammatory drugs in
all patients, although the disease provides a number of



FIG 5. Pathogenesis of AD. The complexity of the clinical phenotype in patients with AD is underlined by

complex profiles of different pathophysiologic pathways connecting the innate and the adaptive immune

response with epithelial barrier dysfunction and allergic sensitization. AMPs, Antimicrobial peptides; DDC,

dermal dendritic cell; Eo, eosinophil; IDEC, inflammatory dendritic epidermal cell; ILC, innate lymphoid

cells; LC, Langerhans cell; TJ, tight junctions.

TABLE III. Essential steps for applying precision medicine in patients with rhinitis

� Precise evaluation of the patient’s perception of disease severity and effect of the disease on the patient’s quality of life, as well as the social and general

environment of the patient

� Clear-cut dissection of nasal pathophysiology into mucosal and structural components

� Rigorous assessment of inflammatory components (eg, eosinophilic vs neutrophilic inflammation, IgE, cytokines, and neural mediators) and functional

effects (nasal hyperreactivity, smell, and patency)

� Correct evaluation of the risk for disease progression

� Proper information for the patient on the treatment strategy (monotherapy vs combined therapy), involving information on treatment goals, expected

benefits and adverse events, and effects of treatment in the long-term together with evaluation of the patient’s preference for a particular therapeutic plan

Type 2 and non–type 2 immune responses are common pathogenic pathways and disease endotypes for asthma, rhinitis, and AD. Epithelial dysfunction is of particular relevance

for describing disease endotypes in patients with rhinitis and AD, whereas the neurogenic pathway is most prominent for rhinitis.
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opportunities for more personalized management.90,91 Thus far,
there is no clear evidence for targeted therapy for any kind of
approved anti-inflammatory treatment regimen in patients with
AD. However, with the emergence of biologics targeting
well-defined cytokines and pathways, such as anti–IL-4/IL-13
or anti–IL-31,92,93 the need for predictive biomarkers of
therapeutic response has to be reconsidered.
Biomarkers could be useful in the management of early-onset

disease at different time points throughout the natural history of
AD (Fig 7).94 Some biomarkers, such as CCL17, have been shown
to be a consistent measurement of AD severity in multiple clinical
trials. Also, filaggrin deficiency as a potential candidate for prog-
nosis and indoleamine 2,3-dioxygenase as a predictive marker for
viral skin infections leading to eczema herpeticum have been
demonstrated.95 It is also a common phenomenon to see multiple
allergen-specific IgE sensitizations, particularly in patients with
moderate-to-severe disease, but their clinical relevance is often
questionable for avoidance strategies. It is highly probable that
multiple biomarkers will be needed as a signature profile in AD
to predict the severity, comorbidities, and treatment response.
Two recent proof-of-concept studies showed that 6 to 8 months

of skin barrier therapy prevents the development of AD during
this period of time in a significant portion (30% to 50%) of infants
born to parents with a history of atopy.96,97 This suggests an
opportunity for early intervention with a positive effect on the
emergence of AD and possibly on the ‘‘atopic march,’’ thus



FIG 6. Proposed endotypes for AD. Three main phenotypes of AD are described: nonlesional skin, acute

disease flares, and chronic remitting relapsing AD. A type 2 immune response is present in all 3 phenotypes,

with a peak in acute disease flares. TH22- and TH17-driven inflammation adds to the type 2 immune response

in the dysregulated immune response present in nonlesional skin, whereas TH22- and TH1-driven

inflammation is prominent in patients with the chronic form of AD. Epithelial dysfunction is a key

mechanism partnering with the dysregulated immune response in nonlesional skin and in patients with

chronic AD and facilitates acute disease flares.

TABLE IV. Proposed endotypes of asthma, AR, and AD

Asthma AR AD

Type 2 immune

response

Type 2 immune

response

Type 2 immune

response

Non–type 2 immune

response

Non–type 2 immune

response

Non–type 2 immune

response

Epithelial dysfunction Epithelial dysfunction

Neurogenic
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representing a disease-modifying strategy.90 The selection of
these high-risk patients was based solely on family history. The
outcome could be substantially improved if we used validated
biomarkers to select those infants (the right patient) with high
risk assessed not only based on family history but also on
biomarker signature.91 Moreover, it is expected that the early
improvement (the right time) of the barrier dysfunction could
be substantially enhanced if we have appropriate new emollients
(the right drug), including ingredients able to support barrier
function, given in the optimal frequency amount (the right
dose). These new products and innovative ingredients could be
based on the availability of biomarkers unraveling the individual
pathophysiologic origin of the barrier dysfunction in a given
patient subgroup.
CONCLUSION AND FUTURE PERSPECTIVES
Precisionmedicine is of broad relevance for themanagement of

asthma, rhinitis, and AD from a better selection of responders to
treatment and design of better clinical trials to risk prediction and
disease-modifying strategies. In this PRACTALLwe summarized
the current knowledge on major asthma, rhinitis, and AD
endotypes (Table IV).
For asthma, several steps have been taken in profiling the type 2

immune response–driven asthma, together with endotype-driven
strategies. However, more information is needed to better target
specific pathways in patients that will optimize patients’ thera-
peutic responses while avoiding adverse effects. Endotype-driven
management of non–type 2 immune response asthma, rhinitis,
and AD is clearly an unmet need in the field.
In addition, most biomarkers are currently used in research

settings and still need to be validated and qualified. Asthma,
rhinitis, and AD biomarkers are complicated by remarkable
heterogeneity compared with specific cancer biomarkers. This
complexity includes different patterns of onset and clinical
presentation and marked variations in the rate of disease
remission or progression, together adding to the considerable
challenge both in determining the appropriate clinical outcome
and in delineating efficacy biomarkers.
A strategy for biomarker validation and qualification needs to

be created, including development of reference laboratories and
clinical epidemiology and validation centers, as well as networks
of cooperative human tissue banks or resources. Open interaction
among steering committees of large trials and large cohort studies
should be encouraged for the free exchange of ideas and
specimens.
Improved knowledge of the pathogenesis of asthma, rhinitis,

and AD and information-relating biomarkers with clinically
relevant outcomes will permit a better means for assessment of
the effects of new interventions. It is evident that there is a shared



FIG 7. The concept of longitudinal biomarkers (BM) in the management of AD at different time points

throughout the natural history of the disease. Early stage BM (stages 1 and 2) allows screening at the

preclinical stage and primary prevention of the disease together with early diagnosis. During the clinical

course of the disease, biomarkers can predict responses, adverse reactions, or both to treatment and can

guide targeted, endotype-driven interventions with an improved safety profile. Prognostic biomarkers

relate to disease severity, disease flares, or occurrence of remission.
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recognition between academia, government regulators, and
industry regarding the need for both the development and
application of precisionmedicine in patients with asthma, rhinitis,
and AD.66 This is a path other disease areas have taken, and there
are experiences, processes, and infrastructure mechanisms in
existence on which we can build.

Clinical implications: Improved knowledge of the pathogenesis
of asthma, rhinitis, and AD leads to the concept of disease endo-
types, thus supporting the potential for the specialty of allergy/
immunology to use the precision medicine approach. After a
correct diagnosis and proper management of comorbidities, a
crucial step is to unravel which pathophysiologic mechanism
or mechanisms are driving the disease, thereby determining
the endotype of the patient and providing validated pathway-
specific diagnostic tests.
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