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ABSTRACT The term “precision medicine” has become very popular over recent years, fuelled by
scientific as well as political perspectives. Despite its popularity, its exact meaning, and how it is different
from other popular terms such as “stratified medicine”, “targeted therapy” or “deep phenotyping” remains
unclear. Commonly applied definitions focus on the stratification of patients, sometimes referred to as a
novel taxonomy, and this is derived using large-scale data including clinical, lifestyle, genetic and further
biomarker information, thus going beyond the classical “signs-and-symptoms” approach.

While these aspects are relevant, this description leaves open a number of questions. For example, when
does precision medicine begin? In which way does the stratification of patients translate into better
healthcare? And can precision medicine be viewed as the end-point of a novel stratification of patients, as
implied, or is it rather a greater whole?

To clarify this, the aim of this paper is to provide a more comprehensive definition that focuses on
precision medicine as a process. It will be shown that this proposed framework incorporates the derivation
of novel taxonomies and their role in healthcare as part of the cycle, but also covers related terms.
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Introduction
The term “precision medicine” has become very popular in recent years, fuelled by scientific as well as
political perspectives [1–6]. It has superseded the term “personalised medicine”, which was defined
synonymously [1], but then dismissed with the argument that physicians have always treated patients on a
personalised level [7]. Indeed, the personal approach that is an inherent part of the doctor–patient
relationship is a central aspect of precision medicine, but is not a new invention. However, new biomedical
information might add substantial information beyond signs and symptoms that were previously
observable, and the term precision medicine implies the novelty of this concept, which is the incorporation
of a wide array of individual data, including clinical, lifestyle, genetic and further biomarker information.

A successful example that is frequently cited in this respect is the determination of the human epidermal
growth factor receptor (HER)-2 status in breast cancer patients [8]. Initially, HER-2 was discovered to be a
prognostic factor with positive patients having a higher probability of a more aggressive course of disease.
Subsequently, clinical trials showed the efficacy of the monoclonal antibody trastuzumab, which is directed
against an epitope on the external domain of the HER-2 protein; now, trastuzumab is given only to the
subgroup of HER-2-positive females, thus proving the gain of including gene expression data. Examples of
cases of obstructive airway diseases are shown in table 1, which summarises phenotyping of individuals
based on different investigational approaches.

Despite the obvious success of this and other examples [17], the meaning of precision medicine, and how
it is related to or different from other popular terms such as “stratified medicine”, “targeted therapy” or
deep phenotyping remains unclear. Commonly used definitions of precision medicine include the
following aspects. 1) Focus on result, i.e. personalised treatment strategies: some define precision medicine
as “treatments targeted to the needs of individual patients on the basis of genetic, biomarker, phenotypic
or psychosocial characteristics that distinguish a given patient from other patients with similar clinical
presentations” [18]. 2) Focus on process and utilised data: others emphasise the data by describing
precision medicine as a model that integrates clinical and other data to stratify patients into novel
subgroups; it is hoped that these have a common basis of disease susceptibility and manifestation and thus
potentially allow for more precise therapeutic solutions [5, 7]. A similar description is given by the
President’s Council of Advisors on Science and Technology: “[…] the tailoring of medical treatment to the
individual characteristics of each patient. It […] [means] the ability to classify individuals into

TABLE 1 Phenotyping of individuals with obstructive lung disease based on different investigational approaches

Reference Disease Variable Diagnostic and/or prognostic model

Medical history and
physical examination

[9] Asthma Age and onset of
disease

Within-subject response to montelukast is superior to fluticasone
in childhood asthma in younger children and children with a
shorter disease duration

Lifestyle [10] Atopic
eczema

Cat exposure and
genetics

Filaggrin loss-of-function main mutations (501x and 2282del4) and
cat ownership at birth interact in their effects on the
development of early-life eczema

Basic laboratory tests [11–14] Severe
asthma

Eosinophil counts Eosinophil counts in peripheral blood and/or bronchial lavage are
predictors for treatment response to anti-IL-5

Imaging NA NA NA No data available
Functional diagnostics [9] Asthma Lung function and

exhaled NO
Children with asthma respond in a different way to ICS and LTRA
using FEV1 as a clinical end-point. High NO levels and decreased
lung function are predictors of a better treatment response to
ICS

Immunology/histology [15] Asthma Cytokine levels Patients with asthma and high pretreatment levels of serum
periostin (surrogate marker of Th2 inflammation) had greater
improvement in lung function with the monoclonal anti-IL-13
antibody lebrikizumab than did patients with low periostin levels

Omics [16] Asthma ADRB2 Substitution at position 16 (rs1042713) in ADRB2 is associated with
enhanced downregulation and uncoupling of β2-receptors. The
use of a LABA as an “add-on controller” is associated with
increased risk of asthma exacerbation in children carrying one
or two A alleles at rs1042713

IL: interleukin; NA: not available; NO: nitric oxide; ICS: inhaled corticosteroid; LTRA: leukotriene receptor antagonist; FEV1: forced expiratory
volume in 1 s; Th2: type 2 helper T-cell; ADRB2: β2-adrenoceptor gene; LABA: long-acting β-agonist.
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subpopulations that differ in their susceptibility to a particular disease or their response to a specific
treatment” [1, 2].

Thus, the focus of commonly applied definitions is on the stratification of patients, sometimes referred to
as a novel taxonomy, and this is derived using large-scale data that go beyond the classical
“signs-and-symptoms” approach. Finding this novel taxonomy has been described as identifying “treatable
traits”, i.e. disease subgroups that can be treated in a better way because of more precise and validated
phenotypic recognition or due to a better understanding of the critical causal pathways [19].

While these aspects are relevant, this description of precision medicine leaves open a number of questions,
such as 1) how can or cannot precision medicine be distinguished from other related terms; 2) when does
precision medicine actually begin; 3) what are the target achievements and underlying concepts of the idea
of precision medicine; 4) how does the stratification of patients translate into better healthcare; 5) can
precision medicine really be viewed as the end-point of a novel stratification of patients, as implied, or is it
rather a greater whole.

To clarify this, the aim of this article is to provide a more comprehensive definition that focuses on
precision medicine as a process. It will be shown that this proposed framework incorporates the derivation
of novel taxonomies and their role in healthcare as part of the cycle, but also covers related terms.

Obviously, precision medicine is not an exclusive need or a unique feature of respiratory medicine.
However, asthma and chronic obstructive pulmonary disease (COPD) are the most common chronic
diseases worldwide, with increasing prevalence, mortality and morbidity. Specifically, the Global Burden of
Disease Study presented rankings for years lived with disability, among which asthma ranked 14th and
COPD ranked 5th in 2010. The annual costs of healthcare and lost productivity in the European Union
due to COPD are estimated to be €48.4 billion per year and those due to asthma to be €33.9 billion per
year [20]. These data highlight the need for optimal management of the most prevalent chronic respiratory
diseases, and we therefore focus on asthma and COPD to illustrate the meaning of precision medicine.

Definition of precision medicine as a process
In our framework, precision medicine is defined as a process which is depicted in figure 1 and described
further in the following sections. The concept incorporates the following ideas: 1) as the process includes a
number of feedback loops, there is no steady end-point of precision medicine where, finally, precise
medical care is provided to the patients; 2) the cycle implies that there are ongoing efforts to become ever
more precise; 3) finer and more accurate stratifications of patients can be interim results of the overall
process, which is captured by the term “stratified medicine”.

An important aspect of this framework therefore is that data assessed in the patients are used to try to
develop clinically relevant models, and that the results of these analyses then inform the further
assessment of patients, thus emphasising the definition of a process and precision medicine as an evolving
result (figure 2).

Deep phenotyping
As a starting point, data are gathered within a suitable group of patients. As a general rule, the patients
should be representative of the population of interest, but other specific sampling details depend on the
later focus of the study. Examples for this might be as follows. If the foremost aim is to identify novel
subgroups of patients (see later), an oversampling of underrepresented cases can be useful; if the focus is
on the development of diagnostic or prognostic models, cohort studies recruiting representative samples of
patients may be sensible; if the aim is to predict treatment response (see later), different study designs will
be required, for instance as described in the literature [21].

Whereas the question of how and which patients are recruited, i.e. the study design, therefore depends on
the specific research question, the characterising feature in this process is the nature of information
gathered in these patients. Specifically, the novel taxonomy aimed for in precision medicine does not rely
on the classical signs-and-symptoms approach, but adds data from other sources, such as gene expression
analyses.

As an example, asthma is known to be a heterogeneous disease with variation in the degree and type of
airway inflammation. To investigate the underlying molecular mechanisms, WOODRUFF et al. [22]
performed a genome-wide gene expression analysis comparing the expression between subjects with
asthma, nonasthmatic smokers and healthy controls. They identified three genes as highly induced in
airway epithelial cells from subjects with asthma, namely POSTN (periostin), CLCA2 (chloride channel,
calcium-activated, family member 1) and SERPINB2 (serine peptidase inhibitor, clade B, member 2).
Furthermore, interleukin (IL)-13 as a key indicator of T-helper type 2 (Th2) inflammation in asthma was
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found to directly induce the expression of these genes in epithelial cells in vitro. The authors postulated
that these genes can be viewed as biomarkers of classic IL-13-driven asthma. These data suggest that
expression levels in these genes can be considered as part of the data profile of asthma patients.

Further examples illustrating that comprehensive molecular analysis is increasingly being used routinely
derive from the Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes (U-BIOPRED)
project, which aims to elucidate the mechanisms and biological pathways of severe asthma. In this cohort,
KUO et al. [23] identified three transcriptome-associated clusters (TACs) by analysing sputum cell
transcriptomics from moderate-to-severe asthmatic subjects and healthy controls. TAC1 comprises an
IL-13/Th2-high predominantly eosinophilic cluster, while TAC2 (associated with interferon/tumour
necrosis factor-α/inflammasome) and TAC3 are non-Th2 phenotypes. Eosinophilic asthma was
predominantly associated with TAC1, but also present in TAC3, whereas neutrophilic asthma was mainly
present with TAC2. Of note, previously used biomarkers such as exhaled nitric oxide and periostin were
no different in the three TACs. Another example from the U-BIOPRED cohort used transcript profiles for
blood gene expression differences and revealed that 1693 genes were differentially expressed between severe
asthmatics and nonasthmatics [24]. Cluster analysis of differentially expressed genes defined subgroups
among the severe asthmatics that differed in molecular responses to oral corticosteroids. This approach
might identify molecular pathways for further studies in poorly controlled asthmatics.

More generally, adding further data with the potential to better reflect underlying pathomechanisms, and
therefore relate to prognosis and therapeutic response requires a deep phenotyping, which is the
comprehensive and fine-grained description of individuals [5, 25]. Useful illustrations of the different
possible levels of assessment have been given by TRACY [26] and LANKTREE et al. [27], and the number and
depth of layers will increase further over time, for example including data on the set of all expressed
phenotypes (i.e. phenome-wide) via electronic health records [28] or genetic sequence data via deep
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treatment response

Track 3

Track 2

Track 1

Deep phenotyping of patients

Medical history

Lifestyle

Physical examination

Basic laboratory

Imaging

Functional diagnostics

Immunology/histology

Omics

Big data

Dissemination and

communication

FIGURE 1 The process of precision medicine. In the deep phenotyping stage, information on patients is
gathered on different levels. The shading indicates that the more voluminous and complex the dataset
becomes, the more likely it is to meet the presupposition for precision medicine and big data. Data are then
forwarded for further analysis to tracks 1–3. In track 1, data are preprocessed, including variable selection,
and mined for unknown structure. In track 2, variables from the previous stages may be used to develop and
validate diagnostic and prognostic models. The clinical relevance of these models may be investigated in
studies showing the effect of the implementation of the models or by forwarding the models to track 3. In
track 3, specific models are developed and validated which aim at predicting treatment response, partly
building on previously developed models. Results from tracks 1–3 are fed back to the deep phenotyping stage
to define the subsequent assessment of patients. Models from tracks 2 and 3 need to be disseminated and
communicated, providing accessible and easy-to-use algorithms for clinical practice.
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sequencing [29] is a realistic option. Longitudinal assessments reflecting disease courses and important
points of transition are recognised to be valuable and add further data layers [30].

For instance, the variability and the dynamic of lung function and inflammatory biomarkers over time is
an additional challenge, as this might substantially influence the definition of different phenotypes. If
physiological and immunological parameters can be assessed on a basis of repeated measurement, this
information can be utilised to analyse the temporal pattern in health and disease as well as to disentangle
the relationship to the fluctuations of environmental stimuli and clinical symptoms. Numerous specific
statistical techniques have been proposed to analyse temporal stability and variability, and overviews can
be found in the literature [31–34].

It should be noted that it is difficult to draw an exact line between data sources that indicate what
comprises only classical versus novel data. Instead, the more voluminous and complex the dataset
becomes, the more likely it is to meet the presupposition for precision medicine (indicated by the shading

Patients with data

Processing/

model building

Diagnostic/prognostic groups with outcomes

Patients with data

Processing/

model building

Strata of patients with outcomes

Patients with data

Processing/

model building

Individual patients with outcomes

FIGURE 2 Evolving precision medicine. Repeating cycles of patient assessment, data processing and model
building yield patient groups at increasingly higher resolution. In the first cycles, patients are categorised into
diagnostic and/or prognostic groups based on few obvious characteristics; later cycles define more specific
strata of patients using more in-depth data; final cycles may eventually target individual patients with specific
data profiles.
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in figure 1). Depending on the nature and amount of resulting data, it may fulfil the definition of “big
data”, regarding the variety of data types, their volume, i.e. being too large and complex to be handled
with traditional tools, and velocity, i.e. having to be processed in a timely manner [35, 36]. However, the
data collected here do not necessarily have to be big, but merely surpass the standard examination to foster
precision medicine.

Processing deep phenotyping data
How are the large-scale data used for precising medicine, i.e. integrated and converted into more precise
therapeutic interventions [25]? Interestingly, many current reports emphasise the aspect of data storage
and handling without acknowledging the role of analytical methods. For instance, a review by SCHADT et al.
[37] describes the computational environments for the analysis of high-dimensional data, but the only
statistical challenge mentioned is the computational complexity associated with these kinds of data. As
another example, the Committee on a Framework for Developing a New Taxonomy of Disease [2]
postulates a novel informational infrastructure which “requires an ‘information commons’ in which data
on large populations of patients become broadly available for research use and a ‘knowledge network’ that
adds value to these data by highlighting their inter-connectedness and integrating them with evolving
knowledge of fundamental biological processes”. However, how this network “adds value” remains unclear.
This is even more important since the novel data types assessed in the previous step require novel
approaches from statistics and bioinformatics. For example, the use of next-generation sequencing
technologies enables the genome-wide investigation of rare genetic variants, but associating these with
diseases requires tailored statistical methods that summarise the information of neighboured variants. And
as the generation of sequence data has exploded over the past decade, so has the number of suggested
statistical tests [38]. In the more general context of omics data, helpful suggestions on processing have
been compiled by MCSHANE et al. [39] and SUNG et al. [40]. Thus, special efforts are required to finally use
the generated data in a clinically relevant way.

To further clarify this aspect, we distinguish three partly sequential tracks: in track 1, the data are handled
without knowledge of a clinical end-point; in track 2, data are used to build models for a more precise
diagnosis or prognosis of disease or disease outcome; and track 3 leads to models that predict more
precisely how well specific patients respond to treatment.

It should be stressed that regardless of the chosen track, statistical models are developed that need to be
confirmed before further use. Although the literature is heterogeneous with regard to the terminology, we
refer to the replication of a model if the model has been shown to be valid in an independent sample
drawn from the same population [41, 42] and can be estimated using internal validation techniques such
as cross-validation or bootstrapping [43]. In contrast, the validation of a model is shown by testing
whether the model is valid in an independent sample drawn from a different population. Depending on
the aspects in which the populations differ, this is termed temporal or external validation. Even though
internal validation is a crucial first step that can help to optimise a model, temporal or external validation
is required for a stringent generalisation of a model [43].

Track 1: preprocessing and data mining
In more detail, track 1 firstly includes quality control and preprocessing of the data. The quality control is
strongly dependent on the specific kind of data and therefore not described here; details can be found in
the literature [44]. For preprocessing, a number of aspects will be data-type specific, for example, after
patients have been genotyped on a genome-wide screening array, allele intensities need to be converted
into genotypes by using a genotype calling algorithm [45]; and in a breathomics study, exhaled air is
analysed to identify health-related volatile organic compounds. Here, proper preprocessing may include a
denoising and baseline correction, and a selection of intensity peaks, among other techniques [46].
Specific quality control considerations are given by MCSHANE et al. [39].

Other aspects to consider in preprocessing will be more general and may include decisions about how to
handle missing data [47, 48]; decisions about how to handle data out of range or below the limits of
detection [49, 50]; and harmonisation of corresponding variables in multicentre projects that were assessed
or coded slightly differently. For example, studies on fractional exhaled nitric oxide as a marker of
eosinophilic inflammation in patients with asthma might be influenced by variable techniques of
measurement, sampling procedures, breathing manoeuvres and different types of devices [51].

An important aspect of preprocessing pertains to the preselection of variables. Since the collection of deep
phenotyping data usually leads to a great amount of mostly unselected data, this will inevitably include
many variables that are irrelevant for later modelling. This is problematic, since many technical examples
have shown that if irrelevant variables that just contain random information (so-called “noise”) are added,
underlying relationships and structures are masked and not detected [52]. As an example, we consider an

https://doi.org/10.1183/13993003.00391-2017 6

PRECISION MEDICINE | I.R. KÖNIG ET AL.



artificial situation for which the data of 45 individuals were simulated. These individuals can be clustered
into three homogeneous subgroups, as shown in figure 3a if two variables are considered. A hierarchical
cluster analysis using only these two variables easily identifies these three clusters perfectly (figure 3b).
However, if three random noise variables are added to the dataset, the cluster algorithm fails to find the
three groups as indicated in the dendogram in figure 3c. As a result, almost half of the individuals are
classified incorrectly. This “garbage in, garbage out” problem has the rather counterintuitive consequence
that having more data is not always better, and if it is planned to derive patient subgroups in the following
steps, the removal of noise leads to more stable and better interpretable models. For this, a number of
statistical approaches have been suggested that select variables within the clustering procedure. In the
example above, a selection within a model-based clustering [53] is able to identify the two relevant
variables and discard the others. Furthermore, variable selection might be guided by scientifically based
a priori knowledge about the possibly biologically relevant variables.

Remaining in track 1, it will in some instances be helpful to interrogate the data for previously unknown
structure using data mining techniques. Most prominently, cluster analysis as used in the artificial
illustration in figure 3 can be performed to potentially derive meaningful subgroups of individuals, i.e.
patients with similar profiles based on their similarity in baseline data [54, 55]. If successful and
reproducible, these profiles can be viewed as exactly the novel diagnostic taxonomy alluded to in the
descriptions of precision medicine given earlier. Since no outcome information would be used, this is an
unsupervised learning approach. To continue the previous example on gene expression in asthma, the
genetic variables that were found to be promising candidates in the previous step were selected to be taken
forward to a subsequent re-analysis of the data including unsupervised learning. Specifically, WOODRUFF

et al. [56] performed a hierarchical cluster analysis of the gene expression data on the genes POSTN,
CLCA2 and SERPINB2 within individuals with asthma and patients classified per high and low expression,
thus interpreted as Th2-high and Th2-low response, respectively.

Subsequently, patients were clustered according to their gene expression levels into those with Th2-high
and Th2-low response. Treating asthma patients with the anti-IL-13 antibody lebrikizumab, CORREN et al.
[15] demonstrated an increase in forced expiratory volume in 1 s (FEV1) with a distinct effect in Th2-high
but not in Th2-low patients, thus demonstrating the clinical utility of this taxonomy.

To fully exploit deep phenotyping data, statistical techniques can be used that consider data from multiple
sources simultaneously. For instance, multiple data types such as single nucleotide polymorphisms, copy
number variations, methylation states, mRNA expression, protein abundance and clinical information can
be clustered in integrative or consensus approaches as suggested in the literature [57, 58].

The result from the preprocessing and data mining in track 1 might be a set of variables and profiles that
have possibly already been selected for being good candidates for tracks 2 and 3. Which of these tracks is
now chosen depends on the prior knowledge, the specific research aim and the available data. For
instance, track 2 is appropriate if representative samples of patients have been assessed longitudinally or
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cross-sectionally, bearing the potential to develop or validate prognostic or diagnostic models next.
However, if patients are being recruited for a randomised clinical trial, models to predict treatment
response may be built directly, thus entering track 3.

Track 2: diagnostic and prognostic models
Using the data from the previous steps, models can be developed that combine multiple predictors to
estimate the probability of particular clinical outcomes or events either at the same time (diagnostic
model) or in the future (prognostic model). Hence, the main difference between diagnosis and prognosis
is the temporal aspect. For instance, 865 adults with severe asthma were recruited prospectively in a cohort
study in a closed-panel managed-care organisation to gather risk factors for asthma-related death among
adults with severe asthma. Based on these data in a setting with comparable access to care,
African-American subjects were not at increased risk of death relative to white subjects. However, in this
cohort, greater severity of asthma scores and poorer perceived asthma control scores were indicators of
increased mortality risk among adults with severe asthma [59].

A number of aspects have to be considered for model building, such as variable selection, modelling of
continuous variables and interactions or restrictions by sample size, and we refer to the literature for
details [60–62]. Importantly, out of a multitude of possibilities encompassing classical and machine
learning approaches, statistical methods to develop the model have to be chosen [63–65]. This should be
context-specific, since some methods automatically include variable selection, some yield easy-to-interpret
models, some handle large numbers of variables effortlessly and some automatically take interactions into
account. Overall, no method is best, but all have different strengths and weaknesses [39]; furthermore, the
classification performances vary depending on the specific dataset [66]. Above that, specific considerations
are required if data from multiple sources are to be used to build a model. As described in detail by
RITCHIE et al. [67], these methods broadly fall into the categories of multi-staged or meta-dimensional
analyses. In multi-staged approaches, the analysis is split into a number of steps and performing
association analyses using only two data types at a time [68, 69]. In contrast, meta-dimensional techniques
combine all data types simultaneously, and examples are provided in the Analysis Tool for Heritable and
Environmental Network Associations (ATHENA) methodology [70] or in reference [71].

Once a stable and meaningful model has been derived, the result is an algorithm or a clinical prediction
rule [21, 72] that forecasts a clinically relevant outcome such as disease onset or mortality and that is
defined by the predicting variables and their respective weights in the algorithm. An example of such an
algorithm is a nomogram in which individual values of a patient can be entered to calculate the predicted
probability. For example, BERTENS et al. [73] present a nomogram that can be used for predicting heart
failure, COPD or both combined, based on individual body mass index, pack-years of cigarette smoking,
N-terminal pro-brain natriuretic peptide levels, FEV1, signs of fluid overload, displaced apex beat,
abnormal breathing sounds and cough.

These models are always developed to fit the given data in an optimal way. Thus, their actual performance
will be estimated too optimistically, and they need to be validated in independent samples [43]. We
therefore indicate by the feedback loop in figures 1 and 2 that having developed a promising model
instigates further phenotyping of patients in whom the performance of the model can be verified. For
example, TANTISIRA et al. [74] identified a functional variant of the glucocorticoid-induced transcript 1
gene (GLCCI1) in patients with asthma, which is associated with substantial decrements in the response to
inhaled glucocorticoids. Even though they replicated their findings in four independent treatment trials
and showed reduced FEV1 in response to inhaled glucocorticoids in subjects with the variant allele [74],
the described variation in the GLCCI1 rs37972 genotype did not seem to affect efficacy of inhaled
corticosteroids (ICS) in northern European asthmatic children and young adults. In this population there
was no association with an increased risk of either oral corticosteroid use or asthma-related hospital visits
or uncontrolled symptoms [75]. The relevance of the step of replication should not be underestimated,
meaning that “Indeed, the performance in such a validation study is arguably all that matters, and how a
model was derived is of little importance if it performs well” [62].

Furthermore, a prognostic or diagnostic model needs to prove its clinical utility. This means that
application of the model helps to improve adverse health outcomes, because effective preventive or
interventive measures can be induced based on the results [76, 77]. Without this, the model may still be
useful by informing about underlying pathological mechanisms or potential targets for therapeutic
approaches, which will be fed back to the previous stages. However, to render medicine more precise, the
question of whether implementing the model in practice has the potential to eventually improve patient
care needs to be investigated [21]. The previous example is limited in this, because patients with
risk-increasing variants still should be treated with ICS. In a meta-analysis by TURNER et al. [16], data from
4226 children in five populations were analysed for an interaction between the Arg(16) polymorphism in
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the β2-adrenoceptor gene (ADRB2) and long-acting β-agonist (LABA) exposure on asthma exacerbations.
The authors observed a genetically increased risk for exacerbation only among children treated with ICS
plus LABAs, but not after treatment with ICS alone, ICS plus leukotriene receptor antagonist (LTRA) or
ICS plus LABAs plus LTRAs. The clinical relevance of this association was shown by a clinical trial in
which 62 children with persistent asthma with the homozygous Arg(16) genotype were randomised to
receive salmeterol or montelukast as an add-on to inhaled fluticasone [78]. Absence from school was
reduced with montelukast compared with salmeterol, and greater improvements occurred in both
symptom and quality of life scores with montelukast against salmeterol, thus proving a potential role of
Arg(16) genotyping for personalised asthma therapy.

How to prove clinical utility of a given model depends on the context. In some instances, the identified
variables may be tested for their value for predicting therapy response in track 3 (see later). However, not
all prognostic factors are also predictive of treatment response [79], so that the clinical impact of the
model should be assessed directly before claiming its clinical relevance. This means that the effect of using
the model on patients’ and/or physicians’ decision making or directly on participant health outcomes,
relative to not using the model, needs to be quantified. Ideally, this is achieved in a cluster-randomised
trial as described by MOONS et al. [80]. Examples for these studies are scarce, but one illustration is the
ongoing progressive cluster-randomised trial in chronic conditions management (PRISMATIC) [81]. In
this, practices are randomised to deliver standard care or use the predictive risk stratification tool (Prism)
that was developed to estimate risk of an emergency hospital admission in the following year. The clinical
utility of this prognostic index is assessed by comparing patients’ individual outcomes after 18 months.

It should be emphasised that the development and validation of diagnostic and prognostic models needs
to be reported in a transparent way. Recommendations for this have been published with the Transparent
Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement
[60]. Finally, in order for the models to be used in practice, they need to be communicated and
disseminated. For this, scientific publications will usually not suffice, but easy-to-use algorithms have to be
made accessible together with interpretation tools.

Track 3: predicting treatment response
To achieve the aim of providing more precise therapeutic strategies, i.e., for “tailored” or “targeted”
therapy, variables that define a novel taxonomy need to be assessed with regard to their value in predicting
treatment response. Two strategies might guide the process of developing models that predict therapy
response. Firstly, one can possibly draw on the prognostic and diagnostic models from the previous stage;
in fact, prognostic factors are sometimes assumed to be the natural variables to consider here. For
example, epidermal growth factor receptor tyrosine kinase status is a prognostic factor for survival in
patients with nonsmall cell lung cancer, but is also predictive for response to the tyrosine kinase inhibitor
gefitinib as first-line treatment [82]. Alternatively, biological and other knowledge can be utilised directly
from the data gathered, as, for instance, in the evaluation of the monoclonal anti-IL-5 antibody
mepolizumab for asthma therapy. In the first clinical trials, mepolizumab was found to be associated with
a significant reduction in blood and sputum eosinophils, but did not appear to add significant clinical
benefit in patients with asthma [83]. Therefore, subsequent clinical trials selected subjects who had
refractory eosinophilic asthma, i.e. a sputum eosinophil percentage of >3% on at least one occasion in the
previous 2 years despite high-dose corticosteroid treatment. In this subgroup, mepolizumab therapy
showed significant clinical effects, reducing exacerbations and improving asthma quality of life scores [14].

Recently, these findings were expanded for the monoclonal antibody against IL-5 receptor, benralizumab.
Again, asthmatics with elevated eosinophils had significantly fewer asthma exacerbations. Moreover, in a
post hoc analysis of patients who had at least three exacerbations in the previous year, patients with blood
eosinophilia receiving benralizumab every 8 weeks had greater improvements relative to placebo in annual
exacerbation rate, lung function (FEV1) and asthma symptoms [84].

As the latter example shows, assessing differential treatment effects often includes the investigation of
subgroups in clinical trials to find out whether treatment effects differ meaningfully in different patient groups.
While the idea is straightforward, methodological challenges include the definition of clinically relevant
differential effects and statistical power [85, 86]. Furthermore, it needs to be acknowledged that if therapeutic
decisions should be informed, randomised clinical trials themselves are required, and general aspects that need
to be considered in this context have been described in detail in the literature [39]. For these trials, specific
study designs have been suggested and reviewed [86, 87]. However, with an increase in precision, these will
also become increasingly challenging, because required sample sizes might become difficult to achieve.

Again, track 3 generates further knowledge about disease and treatment, so that there will be another
feedback to the phenotyping of patients. An illustration of this is the study on nonsmall cell lung cancer
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treated with crizotinib, an inhibitor of the anaplastic lymphoma kinase gene (ALK) [88]. In the first part
of the trial, a dose-escalation study, patients were identified with lung cancer with ALK rearrangement
who showed a dramatic improvement after administration of the drug. Based on that finding, the clinical
trial was modified, specifically enrolling patients with tumours with this rearrangement. Thus, feeding
back the information led to an adjusted trial showing the effectiveness of the treatment.

Finally, as before, in addition to the feedback to phenotyping of patients, dissemination and
communication of the taxonomy is a direct and necessary output.

Conclusions
With our process definition, we propose that “precision medicine” should not be viewed as the end-point
of a novel stratification of patients with clinical utility, but rather as a highly sophisticated and more
complex process. As such, stratified medicine and tailored therapy can be interim outputs of the process,
of which the results should be fed back to gain knowledge and thus further increase the precision.
Additionally, deep phenotyping of individuals is an integral part of the process, as can be big medical data.
In this regard, we would like to stress that just assessing as much data as possible is not expedient; in fact,
we need to move beyond the mere hunting and gathering of data and extract those that are relevant. In
doing that, prior knowledge should not be confused with mere intuition; the selection should be based on
biological, clinical and statistical evidence.

In defining the term precision medicine, it may be helpful to consider what it does not represent. With
our process definition, we emphasise that precision medicine is not a steady state or a specific output from
the research flow. This implies that “precising medicine” might be the more adequate term to reflect the
continuous process of feedback loops, that ongoing efforts for even more precision and individualisation
are required and that newly gained knowledge, possibly from new data sources, can yet further improve
accuracy (figure 2).

We have discussed the term precision medicine against the background of obstructive airway diseases, i.e.
bronchial asthma. Obviously, many phenotypes contribute to the so-called asthma syndrome. Considering
that the target achievements of precision medicine should be always the most effective treatment for the
individual patient, there is an unmet need for ongoing efforts of precising medicine in patients with
uncontrolled, severe asthma. However, whether the term precision medicine is applicable and meaningful
for all degrees of severity, or even all diseases, is still a matter of debate.
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